Identification of the Main Species of Tetrapyrrolic Pigments in Envelope Membranes from Spinach Chloroplasts.

نویسندگان

  • B. Pineau
  • C. Gerard-Hirne
  • R. Douce
  • J. Joyard
چکیده

The chlorophyll precursors protochlorophyllide and chlorophyllide were identified in purified envelope membranes from spinach (Spinacia oleracea) chloroplasts. This was shown after pigment separation by high performance liquid chromatography (HPLC) using specific fluorescence detection for these compounds. Protochlorophyllide and chlorophyllide concentrations in envelope membranes were in the range of 0.1 to 1.5 nmol/mg protein. Chlorophyll content of the envelope membranes was extremely low (0.3 nmol chlorophyll a/mg protein), but the molar ratios of protochlorophyllide and chlorophyllide to chlorophyll were 100 to 1000 times higher in envelope membranes than in thylakoid membranes. Therefore, envelope tetrapyrrolic pigments consist in large part (approximately one-half) of nonphytylated molecules, whereas only 0.1% of the pigments in thylakoids are nonphytylated molecules. Clear-cut separation of protochlorophyllide and chlorophyllide by HPLC allowed us to confirm the presence of a slight protochlorophyllide reductase activity in isolated envelope membranes from fully developed spinach chloroplasts. The enzyme was active only when envelope membranes were illuminated in the presence of NADPH.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluorescence properties of the envelope membranes from spinach chloroplasts. Detection of protochlorophyllide.

At 77 K, under excitation at 440 nm, two major fluorescence emission peaks were observed in envelope membranes from spinach chloroplasts at 636 and 680 nm. A narrow range of wavelengths around 440 nm and a wider range of wavelengths between 390 and 440 nm, respectively, were responsible for excitation of the 636 and 680 nm fluorescence emissions which, in marked contrast with thylakoid fluoresc...

متن کامل

Uptake of bicarbonate ion in darkness by isolated chloroplast envelope membranes and intact chloroplasts of spinach.

Bicarbonate uptake by isolated chloroplast envelope membranes and intact chloroplasts of spinach (Spinacia oleracea L. var. Viroflay) in darkness exhibited a similar dependency upon temperature, pH, time, and concentrations of isolated or attached envelope membranes. This similarity in uptake properties demonstrates the usefulness of the envelope membranes for the study of chloroplast permeabil...

متن کامل

Isolation and bicarbonate transport of chloroplast envelope membranes from species of differing net photosynthetic efficiency.

A three-phase discontinuous sucrose gradient yielded two fractions of chloroplast envelope membranes from spinach (Spinacia oleracea L.), sunflower (Helianthus annuus L.), and maize (Zea mays L., mesophyll and undifferentiated chloroplasts). These species were selected to represent plants with fast photorespiration and slow net photosynthesis, fast photorespiration yet fast net photosynthesis, ...

متن کامل

Lipid and Fatty Acid composition of chloroplast envelope membranes from species with differing net photosynthesis.

Lipid and fatty acid compositions were determined for chloroplast envelope membranes isolated from spinach (Spinacia oleracea L.), sunflower (Helianthus annuus L.), and maize (Zea mays L.) leaves. The lipid composition was similar in sunflower, spinach, and undifferentiated maize chloroplast envelope membranes and different in maize mesophyll chloroplast envelope membranes. The predominant lipi...

متن کامل

Feedback inhibition of phosphatidate phosphatase from spinach chloroplast envelope membranes by diacylglycerol.

Because the envelope phosphatidate phosphatase plays a pivotal role in chloroplast glycerolipid metabolism, we have analyzed whether diacylglycerol could be a regulatory factor of the enzyme. Using isolated envelope membranes in which the level of diacylglycerol was modified by thermolysin treatment of intact chloroplasts to destroy the galactolipid:galactolipid galactosyltransferase, we have d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 102 3  شماره 

صفحات  -

تاریخ انتشار 1993